Lithium intercalation mechanism into FeF3·0.5H2O as a highly stable composite cathode material

نویسندگان

  • Ghulam Ali
  • Ji–Hoon Lee
  • Wonyoung Chang
  • Byung-Won Cho
  • Hun-Gi Jung
  • Kyung-Wan Nam
  • Kyung Yoon Chung
چکیده

The growing demand for lithium-ion batteries (LIBs) requires investigation of high-performance electrode materials with the advantages of being environmentally friendly and cost-effective. In this study, a nanocomposite of open-pyrochlore-structured FeF3·0.5H2O and reduced graphene oxide (RGO) is synthesized for use as a high-performance cathode in LIBs, where RGO provides high electrical conductivity to the composite material. The morphology of the composite shows that FeF3·0.5H2O spheres are embedded into RGO layers and high-resolution TEM image shows that those spheres are composed of primary nanoparticles with a size of ~5 nm. The cycling performance indicates that the composite electrode delivers an initial high discharge capacity of 223 mAh g-1 at 0.05 C, a rate capability up to a high C-rate of 10 C (47 mAh g-1) and stable cycle performance at 0.05 C (145 mAh g-1 after 100 cycles) and 0.2 C (93 mAh g-1 after 100 cycles) while maintaining high electrochemical reversibility. Furthermore, the responsible electrochemical reaction is investigated using in-situ XRD and synchrotron-based X-ray absorption spectroscopy (XAS), and the XRD results show that FeF3·0.5H2O transitions to an amorphous-like phase through a lithiation process. However, a reversible oxidation change of Fe3+ ↔ Fe2+ is identified by the XAS results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities

Novel nanowall arrays of hydrous manganese dioxide MnO2 0.5H2O are deposited onto cathodic substrates by the potentiostatic method from a mixed aqueous solution of manganese acetate and sodium sulfate. The deposition is induced by a change of local pH resulting from electrolysis of H2O, and hierarchical mesoporous nanowall arrays are formed as a result of simultaneous precipitation of manganese...

متن کامل

Large-scale fabrication of graphene-wrapped FeF3 nanocrystals as cathode materials for lithium ion batteries.

Graphene-wrapped FeF3 nanocrystals (FeF3/G) have been successfully fabricated for the first time by a vapour-solid method, which can be generalized to synthesize other metal fluorides. The as-synthesized FeF3/G delivers a charge capacity of 155, 113, and 73 mA h g(-1) at 104, 502, and 1040 mA g(-1) in turn, displaying superior rate capability to bare FeF3. Moreover, it exhibits stable cyclabili...

متن کامل

Phase Transformations and Entropy of Non - Equilibrium Materials

The importance of vibrational entropy to solid-state phase transformations has become well established over the past decade. Considerable experimental and theoretical work has gone into investigating the vibrational entropy of phase transformations in metallic alloys. This thesis examines phase transitions in three unique systems, unified in the experimental tools used to probe the nature of th...

متن کامل

Synthesis, characterization and cycling performance of novel chromium oxide cathode materials for lithium batteries

Chromium oxide (CrOx) cathode material (with chromium oxidation state of +5.3) was synthesized by thermal decomposition of chromium trioxide at high temperature and pressure in oxygen atmosphere. The duration of thermal decomposition had a significant effect on the performance of these materials in terms of lithiation capacity. The detrimental effect of CrO3 and lower oxidation state chromium o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017